Mechanism Analysis and Experimental Validation of Employing Superconducting Magnetic Energy Storage to Enhance Power System Stability
نویسندگان
چکیده
This paper investigates the mechanism analysis and the experimental validation of employing superconducting magnetic energy storage (SMES) to enhance power system stability. The models of the SMES device and the single-machine infinite-bus (SMIB) system with SMES are deduced. Based on the model of the SMIB system with SMES, the action mechanism of SMES on a generator is analyzed. The analysis takes the impact of SMES location and the system operating point into consideration, as well. Based on the mechanism analysis, the P-controller and Q-controller are designed utilizing the phase compensation method to improve the damping of the SMIB system. The influence of factors, such as SMES location, transmission system reactance, the dynamic characteristics of SMES and the system operating point, on the damping improvement of SMES, is investigated through root locus analysis. The simulation results of the SMIB test system verify the analysis conclusions and controller design method. The laboratory results of the 150-kJ/100-kW high-temperature SMES (HT-SMES) device validate that the SMES device can effectively enhance the damping, as well as the transient stability of the power system. OPEN ACCESS Energies 2015, 8 657
منابع مشابه
Enhancement of Stability and Lvrt Capability in Dfig Based Wind Farm Using Smes and Sfcl
In this paper performance analysis of Doubly Fed Induction Generator under abnormal condition is analysed. In recent years, this series compensated transmission system will produce unwanted effect of sub synchronous resonance. Super Conducting Magnetic Energy Storage (SMES) provides an efficient damping for sub synchronous resonance that will enhance power system stability in addition to real a...
متن کاملPower Swings Damping Improvement with STATCOM and SMES Based on the Direct Lyapunov Method
In this paper a comprehensive approach is presented to improve power swings damping based on direct Lyapunov method. The approach combines superconducting magnetic energy storage (SMES) system with static synchronous compensator (STATCOM). Considering the energy absorption/injection ability of SMES, in transient states the combination exchanges both active and reactive powers with power system....
متن کاملIntegration of a Vanadium Redox Flow Battery with a Proton Exchange Membrane Fuel Cell as an Energy Storage System
The proton exchange membrane (PEM) fuel cell is a green energy producer which converts chemical energy to electricity in high yield. Alternatively, the vanadium redox flow battery (VRB) is one of the best rechargeable batteries because of its capability to average loads and output power sources. These two systems are modeled by Nernst equation and electrochemical rules. An effective energy gene...
متن کاملReactive and Active Power Control of Grid WECS Based on DFIG and Energy Storage System under both Balanced and Unbalanced Grid Conditions
This paper focuses on improving the active and reactive power control of Wind Energy Conversion System (WECS) by employing the Battery Energy Storage System (BESS) and controlling the frequency and voltage regulation instantaneously. The proposed power control scheme is composed of two control loops so that they are implemented and designed for active power control and controlling the reactive ...
متن کاملEnhancement Of Voltage Stability And Power Oscillation Damping Using Static Synchronous Series Compensator With Smes
The power system network is becoming more complex nowadays and it is very difficult to maintain the stability of the power system. The main purpose of this paper proposes a 12-pulse based Static Synchronous Series Compensator (SSSC) with and without Superconducting Magnetic Energy Storage (SMES) for enhancing the voltage stability and power oscillation damping in multi area system. Control sche...
متن کامل